Instructions: Use this step-by-step Confidence Interval for the Difference Between Proportions Calculator, by providing the sample data in the form below. I just turned in two paper work sheets of hecka hard . a. to analyze and see if there is a difference between paired scores 48. assumptions of paired samples t-test a. Here's a review of how we can think about the shape, center, and variability in the sampling distribution of the difference between two proportions. Question: The sampling distribution of the difference between means can be thought of as the distribution that would result if we repeated the following three steps over and over again: Sample n 1 scores from Population 1 and n 2 scores from Population 2; Compute the means of the two samples ( M 1 and M 2); Compute the difference between means M 1 M 2 . We also need to understand how the center and spread of the sampling distribution relates to the population proportions. endstream If there is no difference in the rate that serious health problems occur, the mean is 0. Our goal in this module is to use proportions to compare categorical data from two populations or two treatments. Suppose that this result comes from a random sample of 64 female teens and 100 male teens. Regardless of shape, the mean of the distribution of sample differences is the difference between the population proportions, p1 p2. https://assessments.lumenlearning.cosessments/3924, https://assessments.lumenlearning.cosessments/3636. . This difference in sample proportions of 0.15 is less than 2 standard errors from the mean. The proportion of females who are depressed, then, is 9/64 = 0.14. 0.5. This is the same approach we take here. Instead, we want to develop tools comparing two unknown population proportions. 9'rj6YktxtqJ$lapeM-m$&PZcjxZ`{ f `uf(+HkTb+R In other words, there is more variability in the differences. When Is a Normal Model a Good Fit for the Sampling Distribution of Differences in Proportions? %PDF-1.5 1. The formula is below, and then some discussion. When we select independent random samples from the two populations, the sampling distribution of the difference between two sample proportions has the following shape, center, and spread. Here we complete the table to compare the individual sampling distributions for sample proportions to the sampling distribution of differences in sample proportions. h[o0[M/ Over time, they calculate the proportion in each group who have serious health problems. We will introduce the various building blocks for the confidence interval such as the t-distribution, the t-statistic, the z-statistic and their various excel formulas. Here, in Inference for Two Proportions, the value of the population proportions is not the focus of inference. So the sample proportion from Plant B is greater than the proportion from Plant A. The standardized version is then 10 0 obj <> Our goal in this module is to use proportions to compare categorical data from two populations or two treatments. UN:@+$y9bah/:<9'_=9[\`^E}igy0-4Hb-TO;glco4.?vvOP/Lwe*il2@D8>uCVGSQ/!4j A quality control manager takes separate random samples of 150 150 cars from each plant. For example, we said that it is unusual to see a difference of more than 4 cases of serious health problems in 100,000 if a vaccine does not affect how frequently these health problems occur. %PDF-1.5 % p-value uniformity test) or not, we can simulate uniform . Draw conclusions about a difference in population proportions from a simulation. Recall the Abecedarian Early Intervention Project. 120 seconds. where p 1 and p 2 are the sample proportions, n 1 and n 2 are the sample sizes, and where p is the total pooled proportion calculated as: We shall be expanding this list as we introduce more hypothesis tests later on. The sampling distribution of the difference between the two proportions - , is approximately normal, with mean = p 1-p 2. The LibreTexts libraries arePowered by NICE CXone Expertand are supported by the Department of Education Open Textbook Pilot Project, the UC Davis Office of the Provost, the UC Davis Library, the California State University Affordable Learning Solutions Program, and Merlot. We also acknowledge previous National Science Foundation support under grant numbers 1246120, 1525057, and 1413739. <>>> Note: It is to be noted that when the sampling is done without the replacement, and the population is finite, then the following formula is used to calculate the standard . endobj hb```f``@Y8DX$38O?H[@A/D!,,`m0?\q0~g u', % |4oMYixf45AZ2EjV9 The first step is to examine how random samples from the populations compare. If one or more conditions is not met, do not use a normal model. Quantitative. Formula: . Describe the sampling distribution of the difference between two proportions. 4 0 obj However, before introducing more hypothesis tests, we shall consider a type of statistical analysis which We write this with symbols as follows: pf pm = 0.140.08 =0.06 p f p m = 0.14 0.08 = 0.06. For a difference in sample proportions, the z-score formula is shown below. Chapter 22 - Comparing Two Proportions 1. These values for z* denote the portion of the standard normal distribution where exactly C percent of the distribution is between -z* and z*. E48I*Lc7H8 .]I$-"8%9$K)u>=\"}rbe(+,l] FMa&[~Td +|4x6>A *2HxB$B- |IG4F/3e1rPHiw H37%`E@ O=/}UM(}HgO@y4\Yp{u!/&k*[:L;+ &Y Accessibility StatementFor more information contact us atinfo@libretexts.orgor check out our status page at https://status.libretexts.org. The simulation will randomly select a sample of 64 female teens from a population in which 26% are depressed and a sample of 100 male teens from a population in which 10% are depressed. The Sampling Distribution of the Difference between Two Proportions. These terms are used to compute the standard errors for the individual sampling distributions of. 6 0 obj Advanced theory gives us this formula for the standard error in the distribution of differences between sample proportions: Lets look at the relationship between the sampling distribution of differences between sample proportions and the sampling distributions for the individual sample proportions we studied in Linking Probability to Statistical Inference. 2. <> In order to examine the difference between two proportions, we need another rulerthe standard deviation of the sampling distribution model for the difference between two proportions. The proportion of males who are depressed is 8/100 = 0.08. Here is an excerpt from the article: According to an article by Elizabeth Rosenthal, Drug Makers Push Leads to Cancer Vaccines Rise (New York Times, August 19, 2008), the FDA and CDC said that with millions of vaccinations, by chance alone some serious adverse effects and deaths will occur in the time period following vaccination, but have nothing to do with the vaccine. The article stated that the FDA and CDC monitor data to determine if more serious effects occur than would be expected from chance alone. Depression is a normal part of life. Let M and F be the subscripts for males and females. However, the effect of the FPC will be noticeable if one or both of the population sizes (N's) is small relative to n in the formula above. 3 0 obj We call this the treatment effect. difference between two independent proportions. This is still an impressive difference, but it is 10% less than the effect they had hoped to see. The Christchurch Health and Development Study (Fergusson, D. M., and L. J. Horwood, The Christchurch Health and Development Study: Review of Findings on Child and Adolescent Mental Health, Australian and New Zealand Journal of Psychiatry 35[3]:287296), which began in 1977, suggests that the proportion of depressed females between ages 13 and 18 years is as high as 26%, compared to only 10% for males in the same age group. This sampling distribution focuses on proportions in a population. As shown from the example above, you can calculate the mean of every sample group chosen from the population and plot out all the data points. This is a 16-percentage point difference. ), https://assessments.lumenlearning.cosessments/3625, https://assessments.lumenlearning.cosessments/3626. When testing a hypothesis made about two population proportions, the null hypothesis is p 1 = p 2. Large Sample Test for a Proportion c. Large Sample Test for a Difference between two Proportions d. Test for a Mean e. Test for a Difference between two Means (paired and unpaired) f. Chi-Square test for Goodness of Fit, homogeneity of proportions, and independence (one- and two-way tables) g. Test for the Slope of a Least-Squares Regression Line Suppose the CDC follows a random sample of 100,000 girls who had the vaccine and a random sample of 200,000 girls who did not have the vaccine. We use a normal model for inference because we want to make probability statements without running a simulation. In Inference for Two Proportions, we learned two inference procedures to draw conclusions about a difference between two population proportions (or about a treatment effect): (1) a confidence interval when our goal is to estimate the difference and (2) a hypothesis test when our goal is to test a claim about the difference.Both types of inference are based on the sampling . Sampling Distribution (Mean) Sampling Distribution (Sum) Sampling Distribution (Proportion) Central Limit Theorem Calculator . 9.7: Distribution of Differences in Sample Proportions (4 of 5) is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts. The LibreTexts libraries arePowered by NICE CXone Expertand are supported by the Department of Education Open Textbook Pilot Project, the UC Davis Office of the Provost, the UC Davis Library, the California State University Affordable Learning Solutions Program, and Merlot. Lets suppose a daycare center replicates the Abecedarian project with 70 infants in the treatment group and 100 in the control group. A company has two offices, one in Mumbai, and the other in Delhi. But without a normal model, we cant say how unusual it is or state the probability of this difference occurring. The terms under the square root are familiar. Here's a review of how we can think about the shape, center, and variability in the sampling distribution of the difference between two proportions p ^ 1 p ^ 2 \hat{p}_1 - \hat{p}_2 p ^ 1 p ^ 2 p, with, hat, on top, start subscript, 1, end subscript, minus, p, with, hat, on top, start subscript, 2, end subscript: Draw conclusions about a difference in population proportions from a simulation. { "9.01:_Why_It_Matters-_Inference_for_Two_Proportions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.02:_Assignment-_A_Statistical_Investigation_using_Software" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.03:_Introduction_to_Distribution_of_Differences_in_Sample_Proportions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.04:_Distribution_of_Differences_in_Sample_Proportions_(1_of_5)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.05:_Distribution_of_Differences_in_Sample_Proportions_(2_of_5)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.06:_Distribution_of_Differences_in_Sample_Proportions_(3_of_5)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.07:_Distribution_of_Differences_in_Sample_Proportions_(4_of_5)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.08:_Distribution_of_Differences_in_Sample_Proportions_(5_of_5)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.09:_Introduction_to_Estimate_the_Difference_Between_Population_Proportions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.10:_Estimate_the_Difference_between_Population_Proportions_(1_of_3)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.11:_Estimate_the_Difference_between_Population_Proportions_(2_of_3)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.12:_Estimate_the_Difference_between_Population_Proportions_(3_of_3)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.13:_Introduction_to_Hypothesis_Test_for_Difference_in_Two_Population_Proportions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.14:_Hypothesis_Test_for_Difference_in_Two_Population_Proportions_(1_of_6)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.15:_Hypothesis_Test_for_Difference_in_Two_Population_Proportions_(2_of_6)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.16:_Hypothesis_Test_for_Difference_in_Two_Population_Proportions_(3_of_6)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.17:_Hypothesis_Test_for_Difference_in_Two_Population_Proportions_(4_of_6)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.18:_Hypothesis_Test_for_Difference_in_Two_Population_Proportions_(5_of_6)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.19:_Hypothesis_Test_for_Difference_in_Two_Population_Proportions_(6_of_6)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.20:_Putting_It_Together-_Inference_for_Two_Proportions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, { "00:_Front_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "01:_Types_of_Statistical_Studies_and_Producing_Data" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "02:_Summarizing_Data_Graphically_and_Numerically" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "03:_Examining_Relationships-_Quantitative_Data" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "04:_Nonlinear_Models" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "05:_Relationships_in_Categorical_Data_with_Intro_to_Probability" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "06:_Probability_and_Probability_Distributions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "07:_Linking_Probability_to_Statistical_Inference" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "08:_Inference_for_One_Proportion" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "09:_Inference_for_Two_Proportions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "10:_Inference_for_Means" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11:_Chi-Square_Tests" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "12:_Appendix" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "zz:_Back_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, 9.4: Distribution of Differences in Sample Proportions (1 of 5), https://stats.libretexts.org/@app/auth/3/login?returnto=https%3A%2F%2Fstats.libretexts.org%2FCourses%2FLumen_Learning%2FBook%253A_Concepts_in_Statistics_(Lumen)%2F09%253A_Inference_for_Two_Proportions%2F9.04%253A_Distribution_of_Differences_in_Sample_Proportions_(1_of_5), \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\). The process is very similar to the 1-sample t-test, and you can still use the analogy of the signal-to-noise ratio. The distribution of where and , is aproximately normal with mean and standard deviation, provided: both sample sizes are less than 5% of their respective populations. ( ) n p p p p s d p p 1 2 p p Ex: 2 drugs, cure rates of 60% and 65%, what To apply a finite population correction to the sample size calculation for comparing two proportions above, we can simply include f 1 = (N 1 -n)/ (N 1 -1) and f 2 = (N 2 -n)/ (N 2 -1) in the formula as . % Notice the relationship between the means: Notice the relationship between standard errors: In this module, we sample from two populations of categorical data, and compute sample proportions from each. endobj Formulas =nA/nB is the matching ratio is the standard Normal . endstream endobj 238 0 obj <> endobj 239 0 obj <> endobj 240 0 obj <>stream As you might expect, since . endstream endobj startxref Sampling distribution for the difference in two proportions Approximately normal Mean is p1 -p2 = true difference in the population proportions Standard deviation of is 1 2 p p 2 2 2 1 1 1 1 2 1 1. The standard error of differences relates to the standard errors of the sampling distributions for individual proportions. <>/XObject<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI] >>/MediaBox[ 0 0 612 792] /Contents 4 0 R/Group<>/Tabs/S/StructParents 0>> 246 0 obj <>/Filter/FlateDecode/ID[<9EE67FBF45C23FE2D489D419FA35933C><2A3455E72AA0FF408704DC92CE8DADCB>]/Index[237 21]/Info 236 0 R/Length 61/Prev 720192/Root 238 0 R/Size 258/Type/XRef/W[1 2 1]>>stream right corner of the sampling distribution box in StatKey) and is likely to be about 0.15. In other words, assume that these values are both population proportions. We write this with symbols as follows: Of course, we expect variability in the difference between depression rates for female and male teens in different studies. Paired t-test. We can make a judgment only about whether the depression rate for female teens is 0.16 higher than the rate for male teens. The mean of a sample proportion is going to be the population proportion. Unlike the paired t-test, the 2-sample t-test requires independent groups for each sample. Since we add these terms, the standard error of differences is always larger than the standard error in the sampling distributions of individual proportions. 14 0 obj According to a 2008 study published by the AFL-CIO, 78% of union workers had jobs with employer health coverage compared to 51% of nonunion workers. Use this calculator to determine the appropriate sample size for detecting a difference between two proportions. All expected counts of successes and failures are greater than 10. To estimate the difference between two population proportions with a confidence interval, you can use the Central Limit Theorem when the sample sizes are large . For example, is the proportion of women . x1 and x2 are the sample means. Skip ahead if you want to go straight to some examples. Look at the terms under the square roots. The test procedure, called the two-proportion z-test, is appropriate when the following conditions are met: The sampling method for each population is simple random sampling. a) This is a stratified random sample, stratified by gender. . The student wonders how likely it is that the difference between the two sample means is greater than 35 35 years. T-distribution. However, the center of the graph is the mean of the finite-sample distribution, which is also the mean of that population. 2. Requirements: Two normally distributed but independent populations, is known. Here the female proportion is 2.6 times the size of the male proportion (0.26/0.10 = 2.6). Using this method, the 95% confidence interval is the range of points that cover the middle 95% of bootstrap sampling distribution. A USA Today article, No Evidence HPV Vaccines Are Dangerous (September 19, 2011), described two studies by the Centers for Disease Control and Prevention (CDC) that track the safety of the vaccine. { "9.01:_Why_It_Matters-_Inference_for_Two_Proportions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.02:_Assignment-_A_Statistical_Investigation_using_Software" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.03:_Introduction_to_Distribution_of_Differences_in_Sample_Proportions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.04:_Distribution_of_Differences_in_Sample_Proportions_(1_of_5)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.05:_Distribution_of_Differences_in_Sample_Proportions_(2_of_5)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.06:_Distribution_of_Differences_in_Sample_Proportions_(3_of_5)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.07:_Distribution_of_Differences_in_Sample_Proportions_(4_of_5)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.08:_Distribution_of_Differences_in_Sample_Proportions_(5_of_5)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.09:_Introduction_to_Estimate_the_Difference_Between_Population_Proportions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.10:_Estimate_the_Difference_between_Population_Proportions_(1_of_3)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.11:_Estimate_the_Difference_between_Population_Proportions_(2_of_3)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.12:_Estimate_the_Difference_between_Population_Proportions_(3_of_3)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.13:_Introduction_to_Hypothesis_Test_for_Difference_in_Two_Population_Proportions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.14:_Hypothesis_Test_for_Difference_in_Two_Population_Proportions_(1_of_6)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.15:_Hypothesis_Test_for_Difference_in_Two_Population_Proportions_(2_of_6)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.16:_Hypothesis_Test_for_Difference_in_Two_Population_Proportions_(3_of_6)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.17:_Hypothesis_Test_for_Difference_in_Two_Population_Proportions_(4_of_6)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.18:_Hypothesis_Test_for_Difference_in_Two_Population_Proportions_(5_of_6)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.19:_Hypothesis_Test_for_Difference_in_Two_Population_Proportions_(6_of_6)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "9.20:_Putting_It_Together-_Inference_for_Two_Proportions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, { "00:_Front_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "01:_Types_of_Statistical_Studies_and_Producing_Data" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "02:_Summarizing_Data_Graphically_and_Numerically" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "03:_Examining_Relationships-_Quantitative_Data" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "04:_Nonlinear_Models" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "05:_Relationships_in_Categorical_Data_with_Intro_to_Probability" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "06:_Probability_and_Probability_Distributions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "07:_Linking_Probability_to_Statistical_Inference" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "08:_Inference_for_One_Proportion" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "09:_Inference_for_Two_Proportions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "10:_Inference_for_Means" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11:_Chi-Square_Tests" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "12:_Appendix" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "zz:_Back_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, 9.7: Distribution of Differences in Sample Proportions (4 of 5), https://stats.libretexts.org/@app/auth/3/login?returnto=https%3A%2F%2Fstats.libretexts.org%2FCourses%2FLumen_Learning%2FBook%253A_Concepts_in_Statistics_(Lumen)%2F09%253A_Inference_for_Two_Proportions%2F9.07%253A_Distribution_of_Differences_in_Sample_Proportions_(4_of_5), \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\), 9.6: Distribution of Differences in Sample Proportions (3 of 5), 9.8: Distribution of Differences in Sample Proportions (5 of 5), The Sampling Distribution of Differences in Sample Proportions, status page at https://status.libretexts.org.